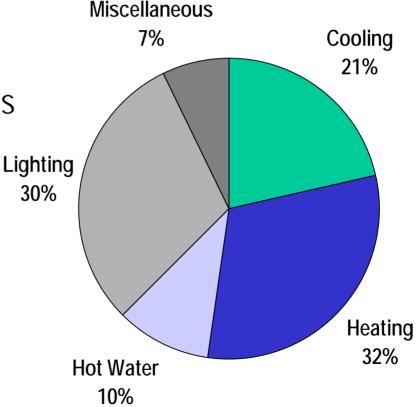


Efficiency opportunities in school HVAC systems

Michael K. Fulton, P.E. York International

Importance of good HVAC systems


HVAC systems impact:

- Health
- Comfort
- Productivity
- Academic performance
- Energy costs
- Maintenance team

Heating, Ventilating and Air Conditioning (HVAC) Miscellaneous

HVAC accounts for 50-60% of energy consumed in schools

Best HVAC design requires integrated design

Considers:

- All interrelated building systems
- Indoor air quality
- Energy consumption and cost
- Environmental benefit
- Acoustics
- Maintenance requirements
- Equipment life
- Replacement costs

Includes:

- Features that provide learning opportunities
- Commissioning to ensure proper operation when occupied

Best HVAC designs require communication

- Among school district, architects, engineers, and multidisciplinary design team
- Begin communication early in schematic design
- Continued communication throughout design, construction, occupancy

Meetings, meetings and more meetings!

Acoustics

- New ANSI standard
- Bad acoustics is common and often hampers learning
- Balance acoustics goals, efficiency goals and ventilation goals

Don't hide it all away... Design in learning opportunities

Remember the goal of a school:

Learning!

Include features that encourage learning:

- Windows to mechanical rooms
- Temperature gauges on pipes and ducts
- Lights to indicate heating/cooling mode
- Exposed pipes and ducts

Set an energy performance target

Examples:

- Energy Star
- Beat best school in the district
- LEED Certification
- Beat ASHRAE Standard 90.1 by 60%
- 50 cents per square foot per year
- 60 kBtu/sf/year

"If you don't know where you're going, any road will do."

Alice in Wonderland

Example: Designing for Energy Star – Setting a goal

www.energystar.gov

Target Finder

- Free, easy online at Energy Star website
- Input size, zip code, and other details
- Automatically outputs target kBtu/sf/year

Using Target Finder to set kbtu/sf/yr goal

1. Facility Information							
*Zip Code	Facility N	Name					
City		State 💌					
2. Facility Characteristics							
*Select Space Type(s) for this proje	ct.						
[Space Types]	~						
3. Target Score							
*Choose desired target score. Select "View Results" to display associated energy use.							
Design Energy (optional) Enter energy source data for your design. Select "View Results" to compare estimated energy to your target.							
Energy Source	Units	Estimated Total Annual Energy Use ¹	Energy Rate (\$/Unit) ²				
Electricity	kBtu 💌		\$/kBtu				
[Select Energy Source]	~		\$				
¹ Annual Energy Use - energy source percentage is determined from DOE-EIA Estimated Electric %, typical of the area designated by zip code. Natural gas is used as 2 nd energy source. ² Energy Rate - uses the DOE-EIA State Average Fuel Rate to calculate energy cost.							

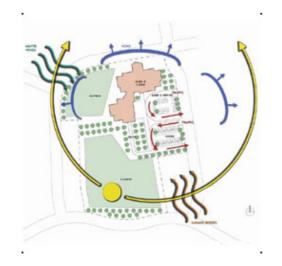
Once you've set a goal, use energy modeling to help get there...

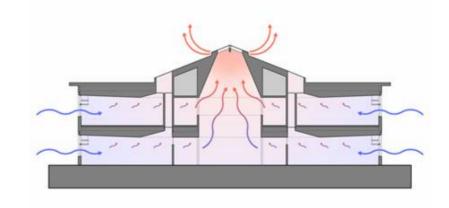
- Choose a modeling tool that can model your school and systems
- Choose an experienced energy modeler
- Begin modeling early in schematic design
- Revise model throughout process
- Use results to inform design decisions

DOE-2

Require life cycle cost analyses

- Ensure that decisions are based on both initial costs and life-cycle costs (LCC)
- LCC includes:
 - Initial cost
 - Maintenance expenses
 - Annual energy costs
 - Projected labor and energy escalation rates
 - Replacement costs


Good HVAC design doesn't begin with the HVAC design...


- Design an efficient shell
 - Insulate the entire shell
 - Minimize infiltration
- Control solar gains
- Minimize internal gains
 - Lighting drives HVAC sizing

Integrated design...multidisciplinary teamcommunication

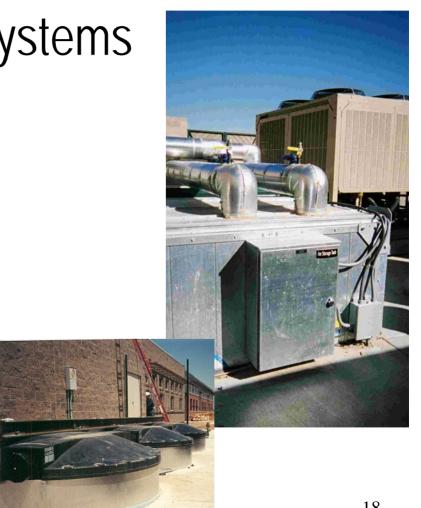
Good HVAC design doesn't begin with the HVAC design...

 Build in opportunities for natural ventilation: orientation, operable windows, stack effect, cross ventilation

Cooling Systems efficiency opportunities

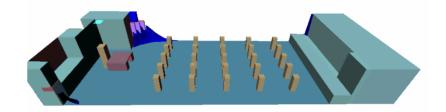
- Consider direct or indirect evaporative cooling
- Ensure design allows for nighttime ventilation for free cooling.
- Consider thermal ice storage to reduce peak demand.
- Consider Underfloor air distribution for 30% actual energy savings.
- Avoid oversizing.
- Evaluate various options using computer simulation.

Developments in Evaporative Cooling


- Efficiency as high as 90%
 - The most efficient cooling available.
 - Might not work at all times due to periods of High Humidity
- Maintenance
 - Periodic replacement of media
 - Scale on piping, pumps, distribution headers
- Water usage
- Costs

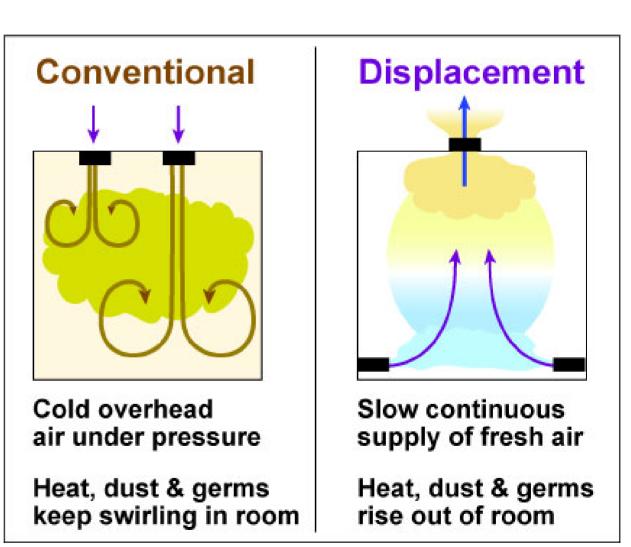
Heat Recovery systems

- Air to Air most efficient up to 80%
- Heat recover Coils not as efficient, best application is remote airstreams 25 – 45% efficient
- Costs have come down, more economical, often a standard option.


Thermal ice storage systems

- Make ice at night, off-peak
- Melting ice provides cooling onpeak
- Reduces peak electric demand
- Saves on energy costs, slightly higher energy consumption
- Commissioning, monitoring and maintenance essential

Displacement Ventilation


- Fresh cool air is slowly supplied near the floor.
- Air rises as it warms.
- Air is exhausted near the ceiling.

Courtesy H. L. Turner Group

Conventional vs.
Displacement

Ventilation

Underfloor Air Delivery Systems

- One pass airflow IAQ, reduced sick days & Asthma
- 30% less fan energy w/VAV
- 15-20% less refrigeration energy
- Excellent application for direct-indirect Evaporative cooling
 - Few times of the year space temperature can't be maintained.
- Maintenance Savings
 - Easy to reconfigure HVAC, Electrical, Computers wiring.
 Maintenance Savings
- Very low sound library's, increased comprehension.

Distribution Systems efficiency opportunities

- Use variable air volume (VAV) systems to save energy or when room-by-room control is needed
- Constant Volume systems are easier to maintain, but use much higher energy due to fan speed and reheat.
- Consider independent mechanical rooms and systems on separate floors to reduce airflow requirements and fan energy
- Reduce duct pressure with low velocity coils and filters
- Require easy access to air handling units and filters
- Select high efficiency fans

Ductwork

- Specify duct leakage tests
- Specify duct construction details: smooth interior surfaces, smooth transitions, mastic sealant

Locate ducts in conditioned or semi-conditioned spaces when

possible

Integrated design...multidisciplinary teamcommunication

What is Your Payback Requirement?

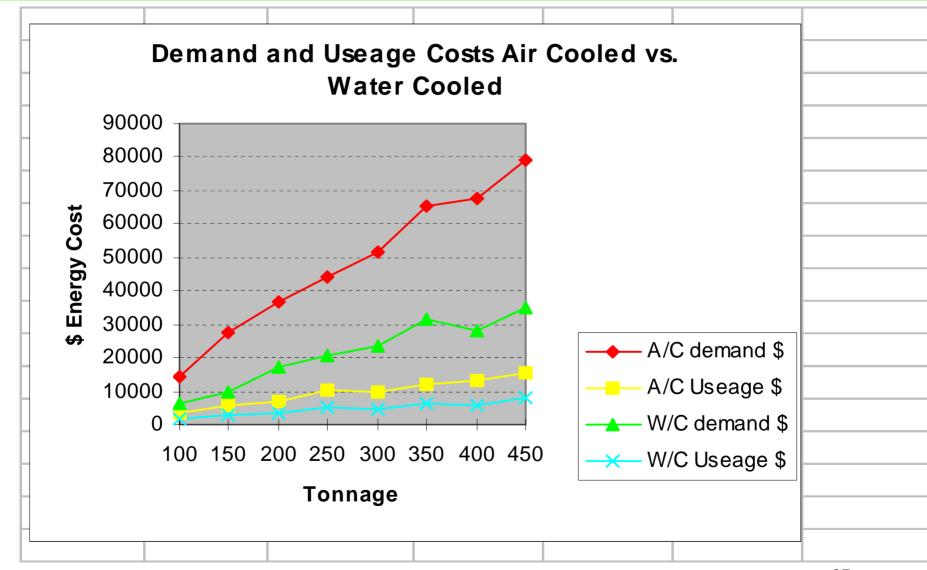
Time Period

Annual Return on Investment

- 66 Months
- 60 months
- 54 months
- 48 months
- 42 months
- 36 months
- 30 months
- 24 months
- 18 months
- 12 months

What is Your Payback Requirement?

Time Period


Annual Return on Investment

•	66 Months	18.18 %
•	60 months	20.00 %
•	54 months	22.22 %
•	48 months	25.00 %
•	42 months	28.57 %
•	36 months	33.33 %
•	30 months	40.00 %
•	24 months	50.00 %
•	18 months	66.67 %
•	12 months	100.0 %

Air Cooled vs. Water Cooled Chillers - First Cost and Performance Comparison in Denver

	Water Cooled	Kw/ System	Kw/ System	KW Save	Savings
	Cooled	Bystem	S y S t e III	Save	
Tons	System	Air	Water	@	\$ Per Year
	Premium	Cooled	Cooled	peak	
100	31,500	135	68	67	
150	18,100	204	96	108	19,350
200	10,750	276	131	145	21,500
250	614	334	159	175	27,176
300	-6,225	380	179	201	32,500
350	-3,810	478	226	252	39,400
400	-1,730	509	214	295	46,400
450	-11,920	594	264	330	51,600

20

Heating system efficiency options

- Consider condensing boilers
- Consider multiple, modular boilers for efficient part load
- Avoid oversizing
- Consider building as a whole: investments in shell with reduced costs of boilers & chillers

Condensing boilers

Water heating efficiency options

Consider

- Tankless water heaters or heat pump water heaters
- Localized vs centralized hot water heaters
- Solar-assisted (or design in capability to add)
- Heat recovery systems

Commissioning

Helps ensure that the building will operate as intended...

- Schedules independent and coordinated testing to ferret out problems while crews are still on the job
- Gets past the blame game.
- Takes problem solving off the backs of the school maintenance crews
- Can include written and video training for operations staff
- Improves comfort and decreases liability from IAQ issues
- Required when going for LEED certification

The cost of commissioning

COSTS OF COMMISSIONING, NEW CONSTRUCTION

Commissioning Scope	Cost		
All Mechanical and Electrical Building Systems	0.5-1.5% of total construction cost		
HVAC and Automated Control Systems	1.5-2.5% of mechanical system cost		
Electrical Systems Commissioning	1.0-1.5% of electrical system cost		
Energy-Efficiency Measures	\$0.23-0.28/ft² (\$2.48-\$3.01/m²)		

Source: Portland Energy Conservation Inc., as published in Building Commissioning Guide version 2.2 from the U.S. General Services Administration and the U.S. Department of Energy, July 30, 1998.

HVAC Summary

- Use whole building approach
- Energy modeling is a must
- Perform life-cycle cost analysis with several options
- Right size equipment
- Design in teaching opportunities
- Look for solutions with multiple benefits
- Commission